Relação fundamental em processos de fotoemissão no sistema de mecânica generalizado Graceli.

Equação fundamental

Conhecendo as energias anteriormente definidas estamos aptos a compreender a equação fundamental que descreve o processo de fotoemissão. Tal equação fundamenta-se no princípio da conservação da energia e considera que a energia total do sistema inicialmente em equilíbrio somada à energia do fóton incidente deve igualar-se à energia total do sistema em equilíbrio após o elétron ser ejetado, somada à energia necessária para se remover o elétron e à energia cinética deste elétron no vácuo:

 / G ψ  = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Reagrupando os termos acima teremos:

 /G ψ  = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

A expressão acima corresponde à equação geral que governa o processo de fotoemissão com a referência de energia tomada necessariamente como a energia de vácuo uma vez que a energia cinética é definida no referencial da amostra e que a energia de ligação relatada também encontra-se referida à energia de vácuo. Alguns problemas práticos surgem ao se considerar um experimento real, entretanto. O primeiro refere-se ao fato que a energia de vácuo acima citada corresponde à energia de vácuo da amostra e não à energia de vácuo do dispositivo realmente responsável por medir a energia cinética dos elétrons, o analisador de elétrons. Isto se deve ao fato de que as funções trabalho do analisador e da amostra não são necessariamente iguais, e, considerando-se que ambos encontram-se eletricamente conectados, uma diferença de potencial de contato existe entre o analisador e a amostra.

A existência deste potencial de contato traz algumas implicações quanto à medida da energia cinética no analisador uma vez que a mesma implica a existência de um campo elétrico na região em vácuo compreendida entre a superfície da amostra e do analisador. Um elétron que, em relação ao nível de vácuo da amostra, possua uma energia cinética Ecin, seria percebido pelo analisador (em relação ao seu próprio nível de vácuo, portanto), como possuindo uma energia cinética dada por Ecin.medida = Ecin - e , onde -e é a carga do elétron e  a diferença de potencial de contato entre a amostra e o analisador (e  =  amostra - analisador). O termo -e referese à energia ganha pelo elétron ao se mover da amostra até o analisador, estando a amostra em um potencial  abaixo do potencial do analisador. A existência da diferença de potencial de contato não seria problema caso esta fosse constante, mas quando se considera que amostras diferentes em análise possuem, cada qual, uma função trabalho diferente, na maioria das vezes previamente desconhecida, um problema real existe.

O problema atrelado ao potencial de contato reside na escolha do referencial de energia e para solucioná-lo basta portanto redefinir a energia de referência para um nível de energia comum tanto à amostra como ao analisador. Este nível de referência é evidente: a energia de Fermi.

Considerando que a diferença entre o nível de vácuo da amostra e a energia de fermi da mesma é a sua função trabalho , a energia cinética ECINF medida agora em relação ao nível de Fermi pode ser escrita como:

 / G ψ  = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

A equação fundamental em processos de fotoemissão torna-se então:

 / G ψ  = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Nestas equações, tanto a energia de ligação EBF quanto a energia cinética EcinF referem-se agora à energia de Fermi, e usualmente costuma-se suprimir o "F" nesta expressão. O termo energia cinética neste caso foge, é claro, dos rigores de sua definição clássica e as energias cinéticas e de ligação Ecin e EB usualmente encontradas nas literatura encontram-se geralmente referidas à energia de fermi. Entretanto não são poucos os em que as mesmas encontram-se referidas ao nível de vácuo de forma que alguma atenção quanto a este ponto é sempre requerida ao se consultar as tais informações na literatura.





Relação fundamental em processos de fotoemissão

Equação fundamental

Conhecendo as energias anteriormente definidas estamos aptos a compreender a equação fundamental que descreve o processo de fotoemissão. Tal equação fundamenta-se no princípio da conservação da energia e considera que a energia total do sistema inicialmente em equilíbrio somada à energia do fóton incidente deve igualar-se à energia total do sistema em equilíbrio após o elétron ser ejetado, somada à energia necessária para se remover o elétron e à energia cinética deste elétron no vácuo:

 / ψ ω / c

Reagrupando os termos acima teremos:

 / ψ ω / c

A expressão acima corresponde à equação geral que governa o processo de fotoemissão com a referência de energia tomada necessariamente como a energia de vácuo uma vez que a energia cinética é definida no referencial da amostra e que a energia de ligação relatada também encontra-se referida à energia de vácuo. Alguns problemas práticos surgem ao se considerar um experimento real, entretanto. O primeiro refere-se ao fato que a energia de vácuo acima citada corresponde à energia de vácuo da amostra e não à energia de vácuo do dispositivo realmente responsável por medir a energia cinética dos elétrons, o analisador de elétrons. Isto se deve ao fato de que as funções trabalho do analisador e da amostra não são necessariamente iguais, e, considerando-se que ambos encontram-se eletricamente conectados, uma diferença de potencial de contato existe entre o analisador e a amostra.

A existência deste potencial de contato traz algumas implicações quanto à medida da energia cinética no analisador uma vez que a mesma implica a existência de um campo elétrico na região em vácuo compreendida entre a superfície da amostra e do analisador. Um elétron que, em relação ao nível de vácuo da amostra, possua uma energia cinética Ecin, seria percebido pelo analisador (em relação ao seu próprio nível de vácuo, portanto), como possuindo uma energia cinética dada por Ecin.medida = Ecin - e , onde -e é a carga do elétron e  a diferença de potencial de contato entre a amostra e o analisador (e  =  amostra - analisador). O termo -e referese à energia ganha pelo elétron ao se mover da amostra até o analisador, estando a amostra em um potencial  abaixo do potencial do analisador. A existência da diferença de potencial de contato não seria problema caso esta fosse constante, mas quando se considera que amostras diferentes em análise possuem, cada qual, uma função trabalho diferente, na maioria das vezes previamente desconhecida, um problema real existe.

O problema atrelado ao potencial de contato reside na escolha do referencial de energia e para solucioná-lo basta portanto redefinir a energia de referência para um nível de energia comum tanto à amostra como ao analisador. Este nível de referência é evidente: a energia de Fermi.

Considerando que a diferença entre o nível de vácuo da amostra e a energia de fermi da mesma é a sua função trabalho , a energia cinética ECINF medida agora em relação ao nível de Fermi pode ser escrita como:

 / ψ ω / c

A equação fundamental em processos de fotoemissão torna-se então:

 ψ ω / c

Nestas equações, tanto a energia de ligação EBF quanto a energia cinética EcinF referem-se agora à energia de Fermi, e usualmente costuma-se suprimir o "F" nesta expressão. O termo energia cinética neste caso foge, é claro, dos rigores de sua definição clássica e as energias cinéticas e de ligação Ecin e EB usualmente encontradas nas literatura encontram-se geralmente referidas à energia de fermi. Entretanto não são poucos os em que as mesmas encontram-se referidas ao nível de vácuo de forma que alguma atenção quanto a este ponto é sempre requerida ao se consultar as tais informações na literatura.

Comentários

Postagens mais visitadas deste blog